ASM Oral Presentation Australian Society for Microbiology Annual Scientific Meeting 2025

Machine learning uncovers potential resistance-guided diagnostic targets for Neisseria gonorrhoeae (121290)

Andrey Verich 1 2 , Priya Ramarao-Milne 2 , Letitia Sng 2 , Ella Trembizki 3 , Elisa Mokany 4 , Tanya Applegate 1 , Denis Bauer 2
  1. The Kirby Institute, University of New South Wales, Kensington, NSW, Australia
  2. Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
  3. The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
  4. SpeeDx Pty. Ltd., Sydney, NEW, Australia
Publish consent withheld
  1. Ouk, V. et al. Emerg Infect Dis 30, 1493–1495 (2024)
  2. Golparian, D. et al. Expert Rev Mol Diagn 22, 29–48 (2022)
  3. Bayat, A. et al. GigaScience 9, giaa077 (2020)
  4. Dunne, R. et al. Comput Struct Biotechnol J 21, 4354–4360 (2023)
  5. Bayat, A. et al. Sci Rep 11, 15923 (2021)
  6. Mlynarczyk-Bonikowska, B. et al. International Journal of Molecular Sciences 23, 10499 (2022)
  7. Garoff, L. et al. Journal of Antimicrobial Chemotherapy 73, 3285–3292 (2018)