Machine learning uncovers potential resistance-guided diagnostic targets for Neisseria gonorrhoeae (121290)
Andrey Verich
1
2
,
Priya Ramarao-Milne
2
,
Letitia Sng
2
,
Ella Trembizki
3
,
Elisa Mokany
4
,
Tanya Applegate
1
,
Denis Bauer
2
- The Kirby Institute, University of New South Wales, Kensington, NSW, Australia
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
- The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- SpeeDx Pty. Ltd., Sydney, NEW, Australia
Publish consent withheld
- Ouk, V. et al. Emerg Infect Dis 30, 1493–1495 (2024)
- Golparian, D. et al. Expert Rev Mol Diagn 22, 29–48 (2022)
- Bayat, A. et al. GigaScience 9, giaa077 (2020)
- Dunne, R. et al. Comput Struct Biotechnol J 21, 4354–4360 (2023)
- Bayat, A. et al. Sci Rep 11, 15923 (2021)
- Mlynarczyk-Bonikowska, B. et al. International Journal of Molecular Sciences 23, 10499 (2022)
- Garoff, L. et al. Journal of Antimicrobial Chemotherapy 73, 3285–3292 (2018)